Name/ period:	
Do Now	Consider these released STAR test questions:
AIM to learn	SWBAT decide which gas laws to use when considering a problem.
Standard(s)	Gases and Their Properties
	CH4. The kinetic molecular theory describes the motion of atoms and molecules and explains the properties of gases. As a basis for understanding this concept:
	CH4. a. Students know the random motion of molecules and their collisions with a surface create the observable pressure on that surface.
	CH4. b. Students know the random motion of molecules explains the diffusion of gases.
	CH4. c. Students know how to apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases.
	CH4. d. Students know the values and meanings of standard temperature and pressure (STP).
	CH4. e. Students know how to convert between the Celsius and Kelvin temperature scales.
	CH4. f. Students know there is no temperature lower than 0 Kelvin.
Agenda	1. Do Now 2. Homework stamp/review 3. Ideal Gas Law (PV=nRT), worksheet 4. Dalton's Law, worksheet 5. Introduction of Molar Volume of Hydrogen lab 6. Eudiometer practice 7. Boyle's Law miniquiz 8. Worksheet group study (if time available)
Homework	Finish the worksheets, prepare for $\mathrm{Mg} / \mathrm{HCl}$ lab on Wednesday. Gas Laws Quiz on Friday, no notes.

Dalton's Law Practice Problems

1) Three flasks are connected to each other, separated only by a three-way stopcock.

- Flask 1 has a volume of 3.000 liters and holds helium gas at a pressure of 3.500 atmospheres
- Flask 2 has a volume of 2.000 liters and holds nitrogen gas at a pressure of 2.000 atmospheres
- Flask 3 has a volume of 1.800 liters and holds oxygen gas at a pressure of 4.000 atmospheres
If the stopcock separating the flasks were to be opened, what would the partial pressure of each gas in the apparatus be?

2) What would the total pressure in the apparatus be?
3) What would the mole fraction of oxygen be inside the apparatus after the stopcock was opened?
4) If liquid water is added to the mixture, what will the mole fraction of each of the gases in the mixture be? The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 0.031 atm .
