\qquad

Acids and Bases Study Guide

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1) Consider the reaction
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-(a q)$. Which species is the conjugate acid?
(A) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$
(C) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-(a q)$
(B) $\mathrm{H}_{2} \mathrm{O}(l)$
(D) $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
\qquad 2) Identify the Bronsted acids and bases in the following equation ($\mathrm{A}=$ Bronsted acid, $\mathrm{B}=$ Bronsted base):
$\mathrm{HSO}_{3}{ }^{-}+\mathrm{CN}^{-} \rightarrow \mathrm{HCN}+\mathrm{SO}_{3}{ }^{2-}$
(A) $\begin{array}{llll}\mathrm{B} & \mathrm{A} & \mathrm{B} & \mathrm{A}\end{array}$
(D) A
B A B
$\begin{array}{lllll}\text { (B) } & \mathrm{B} & \mathrm{A} & \mathrm{A} & \mathrm{B}\end{array}$
(D) A
B
B
A
\qquad 3) Which of the following is not a conjugate acid-base pair?
(A) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{4}{ }^{2-}$
(C) $\mathrm{HBr}, \mathrm{Br}^{-}$
(B) $\mathrm{HNO}_{3}, \mathrm{NO}_{3}{ }^{-}$
(D) $\mathrm{H}_{2} \mathrm{PO}_{4}-, \mathrm{HPO}_{4}{ }^{2-}$
\qquad 4) Which of the following is a conjugate acid-base pair?
(A) $\mathrm{HPO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$
(C) $\mathrm{HNH}_{4}, \mathrm{NH}_{4}^{+}$
(B) $\mathrm{HNO}_{3}^{-}, \mathrm{H}_{2} \mathrm{NO}_{3}$
(D) $\mathrm{H}_{2} \mathrm{CN}, \mathrm{CN}^{-}$
\qquad 5) Choose the case that is not a Bronsted conjugate acid-base pair.
(A) $\mathrm{HCN}, \mathrm{CN}^{-}$
(C) $\mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{2} \mathrm{BO}_{3}$
(B) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{HCOH}$
(D) $\mathrm{HClO}_{2}, \mathrm{ClO}_{2}^{-}$
2) In deciding which of two acids is the stronger, one must know
(A) the pH of each acid solution
(B) both the concentration of each acid solution and the equilibrium constant of each acid
(C) the concentration of each acid solution
(D) the equilibrium constant of each acid
\qquad 7) The fact that $\mathrm{HCl}(a q)$ is a strong acid also means that Cl^{-}is $\mathrm{a}(\mathrm{n})$ \qquad .
(A) strong conjugate base
(C) weak conjugate base
(B) proton donor
(D) amphoteric substance
\qquad 8) Which of the following is the strongest conjugate base?
(A) $\mathrm{NO}_{3}{ }^{-}$
(C) Cl^{-}
(B) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-$ or $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(D) all the same
\qquad 9) Which of the following is not a strong acid?
(A) HCl
(C) HNO_{3}
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ or $\mathrm{CH}_{3} \mathrm{COOH}$
3) Which of the following must be true if a solution is to be considered acidic?
(A) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] /\left[\mathrm{OH}^{-}\right]$
(C) $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
(B) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
(D) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
\qquad 11) As water is heated, its $\left[\mathrm{H}^{+}\right]$increases. This means that
(A) $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$
(B) the water is no longer neutral
(C) the water is no longer neutral and $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$are correct
(D) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
(E) None of the other choices
\qquad 12) Choose the pair of concentrations that cannot be in a given aqueous solution at $25^{\circ} \mathrm{C}$.
(A) $\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M},\left[\mathrm{OH}^{-}\right]=10^{-11} \mathrm{M}$
(D) $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{M},[\mathrm{OH}]=10^{-7} \mathrm{M}$
(B) $\left[\mathrm{H}^{+}\right]=10^{-13} \mathrm{M},\left[\mathrm{OH}^{-}\right]=1 \mathrm{M}$
(E) None of the other choices
(C) $\left[\mathrm{H}^{+}\right]=10 \mathrm{M},\left[\mathrm{OH}^{-}\right]=10^{-15} \mathrm{M}$
\qquad 13) A solution has $\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-3} \mathrm{M}$. The $\left[\mathrm{OH}^{-}\right]$in this solution is
(A) $4.2 \times 10^{-3} \mathrm{M}$
(C) $1.0 \times 10^{-14} \mathrm{M}$
(B) $2.4 \times 10^{-12} \mathrm{M}$
(D) $4.2 \times 10^{-11} \mathrm{M}$
\qquad 14) A solution has $\left[\mathrm{OH}^{-}\right]=2.8 \times 10^{-7} \mathrm{M}$. The $\left[\mathrm{H}^{+}\right]$in this solution is
(A) $2.8 \times 10^{-7} \mathrm{M}$
(C) $3.6 \times 10^{-8} \mathrm{M}$
(B) $1.0 \times 10^{-7} \mathrm{M}$
(D) 1.0 M
\qquad 15) Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that has a pH of 8.95 .
(A) $8.9 \times 10^{-6} \mathrm{M}$
(C) $1.1 \times 10^{-9} \mathrm{M}$
(B) $1.1 \times 10^{-2} \mathrm{M}$
(D) $1.0 \times 10^{-7} \mathrm{M}$
\qquad 16) Calculate the $\left[\mathrm{OH}^{-}\right]$in a solution that has a pH of 3.70 .
(A) $5.0 \times 10^{-1} \mathrm{M}$
(C) $5.0 \times 10^{-11} \mathrm{M}$
(B) $1.0 \times 10^{-7} \mathrm{M}$
(D) $5.0 \times 10^{-4} \mathrm{M}$
\qquad 17) A solution with a pH of 2 is how many times more acidic as a solution with a pH of 4 ?
(A) 2
(C) 10
(B) 0.5
(D) 100
\qquad 18) A solution with a pH of 3 is how many times as acidic as a solution with a pH of 4 ?
(A) 15 times as acidic
(C) 80 times as acidic
(B) 12 times as acidic
(D) 10 times as acidic
\qquad 19) Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that shows a pH of 11.70 .
(A) $2.0 \times 10^{-12} \mathrm{M}$
(C) 11.7 M
(B) $5.0 \times 10^{-3} \mathrm{M}$
(D) 2.3 M
4) Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that shows a pH of 2.30 .
(A) $5.0 \times 10^{-3} \mathrm{M}$
(C) $2.0 \times 10^{-12} \mathrm{M}$
(B) 2.3 M
(D) 11.7 M
\qquad 21) The pH of a solution at $25^{\circ} \mathrm{C}$ in which $\left[\mathrm{OH}^{-}\right]=3.4 \times 10^{-5} \mathrm{M}$ is
(A) 6.34
(C) 4.47
(B) 10.47
(D) 9.53
\qquad 22) Solid calcium hydroxide is dissolved in water until the pH of the solution is 10.94 . The hydroxide ion concentration $\left[\mathrm{OH}^{-}\right]$of the solution is
(A) $1.1 \times 10^{-11} \mathrm{M}$
(C) 3.06 M
(B) $1.0 \times 10^{-13} \mathrm{M}$
(D) $8.7 \times 10^{-4} \mathrm{M}$
\qquad 23) A solution has $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-8} \mathrm{M}$. The pH of this solution is
(A) 7.40
(C) 6.60
(B) 10.80
(D) 3.20
\qquad 24) A solution has $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-8} \mathrm{M}$. The pOH of this solution is
(A) 6.60
(C) 7.40
(B) 3.20
(D) 10.80
\qquad 25) Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that has a pH of 5.21 .
(A) $1.6 \times 10^{-2} \mathrm{M}$
(C) $1.6 \times 10^{-9} \mathrm{M}$
(B) $4.0 \times 10^{-3} \mathrm{M}$
(D) $6.2 \times 10^{-6} \mathrm{M}$
\qquad 26) A solution has a pH of 6.49 . The pOH of this solution is
(A) 6.49
(C) 6.51
(B) 7.51
(D) 3.2×10^{-6}
\qquad 27) A solution has $\left[\mathrm{OH}^{-}\right]=5.0 \times 10^{-4} \mathrm{M}$. The pH of this solution is
(A) 4.50
(C) 3.30
(B) 10.70
(D) 2.0×10^{-11}
\qquad 28) A solution has a pH of 4.35 . The $\left[\mathrm{H}^{+}\right]$in this solution is
(A) 4.35 M
(C) $4.35 \times 10^{-5} \mathrm{M}$
(B) $3.50 \times 10^{-4} \mathrm{M}$
(D) $4.50 \times 10^{-5} \mathrm{M}$
\qquad 29) What is the pH of a solution that has $\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-9} \mathrm{M}$?
(A) 9.40
(C) 4.60
(B) 8.40
(D) 5.60
\qquad 30) What is the pH of a solution prepared by dissolving 80.0 g NaOH in enough water to make 0.50 L of solution?
(A) 14.60
(C) 0.60
(B) 4.00
(D) -0.60
\qquad 31) How many moles of pure NaOH must be used to prepare 1.0 L of a solution that has $\mathrm{pH}=13.00$?
(A) 10.0 mol
(C) 1.0 mol
(B) 13.0 mol
(D) 0.10 mol
\qquad 32) Calculate the pH of a 0.53 M HCl solution.
(A) 13.70
(C) -0.53
(B) 0.53
(D) 0.28
\qquad 33) Which statement is true for a strong acid solution with a concentration greater than 1.0 M ?
(A) $\mathrm{pH}<0$
(C) $\mathrm{pH}>\mathrm{pOH}$
(B) $\mathrm{pOH}>\mathrm{pH}$
(D) two of these
\qquad 34) A solution is prepared by dissolving $36.5 \mathrm{~g} \mathrm{HCl}(\mathrm{g})$ in enough water to make 1.0 L of solution. The pH of this solution is
(A) 1.00
(C) 0
(B) -1.00
(D) 14.00
\qquad 35) Calculate the pH of an acid solution containing $0.10 \mathrm{M} \mathrm{HNO}_{3}$.
(A) 7.00
(C) -1.00
(B) 0.10
(D) 1.00
\qquad 36) Calculate the pH of $1.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$.
(A) 2.90
(C) 11.00
(B) 1.00
(D) 3.00
\qquad 37) Calculate the pH of $0.010 \mathrm{M} \mathrm{HClO}_{4}$.
(A) 2.00
(C) 0.010
(B) 1.00
(D) -2.00
\qquad 38) What is the pH of a 10 M solution of HNO_{3} ?
(A) 10
(C) 0
(B) -1.0
(D) 1.0
\qquad 39) What is the pH of a 2.0 M solution of HClO_{4} ?
(A) -0.30
(C) 14.30
(B) 13.70
(D) 0.30
\qquad 40) A weak acid, HF , is in solution with dissolved sodium fluoride, NaF . If HCl is added, which ion will react with the extra hydrogen ions from the HCl to keep the pH from changing?
(A) OH^{-}
(C) Na^{+}
(B) Na^{+}
(D) F^{-}
