\qquad

Chapter 17 Study Guide

Multiple Choice
 Identify the choice that best completes the statement or answers the question.

1) What happens to the energy produced by burning gasoline in a car engine?
(A) The energy is lost as heat in the exhaust.
(B) The energy is transformed into work to move the car.
(C) The energy heats the parts of the engine.
(D) all of the above
2) A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
(A) The temperature of the metal will increase.
(B) The temperature of the water will increase.
(C) The temperature of the water will decrease.
(D) The temperature of the water will increase and the temperature of the metal will decrease.
3) How does a calorie compare to a joule?
(A) A calorie is smaller than a joule.
(B) A calorie is larger than a joule.
(C) A calorie is equal to a joule.
(D) The relationship cannot be determined.
4) What would likely happen if you were to touch the flask in which an endothermic reaction were occurring?
(A) The flask would probably feel cooler than before the reaction started.
(B) The flask would probably feel warmer than before the reaction started.
(C) The flask would feel the same as before the reaction started.
(D) none of the above
5) Which of the following is NOT a form of energy?
(A) light
(B) pressure
(C) heat
(D) electricity
6) When energy is changed from one form to another,
\qquad _.
(A) some of the energy is lost entirely
(B) all of the energy can be accounted for
(C) a physical change occurs
(D) all of the energy is changed to a useful form
7) If heat is released by a chemical system, an equal amount of heat will be \qquad -.
(A) absorbed by the surroundings
(B) absorbed by the universe
(C) released by the surroundings
(D) released by the universe
8) Which of the following is transferred due to a temperature difference?
(A) chemical energy
(B) mechanical energy
(C) electrical energy
(D) heat
9) In an exothermic reaction, the energy stored in the chemical bonds of the reactants is \qquad -.
(A) equal to the energy stored in the bonds of the products
(B) greater than the energy stored in the bonds of the products
(C) less than the energy stored in the bonds of the products
(D) less than the heat released
10) When your body breaks down sugar completely, how much heat is released compared to burning the same amount of sugar in a flame?
(A) The body releases more heat.
(B) The body releases less heat.
(C) The body releases the same amount of heat.
(D) The body releases no heat.
11) A piece of candy has 5 Calories (or 5000 calories). If it could be burned, leaving nothing but carbon dioxide and water, how much heat would it give off?
(A) 500 calories
(B) 5 kilocalories
(C) 5000 joules
(D) Not enough information is given.
12) How many joules are in 148 calories? $(1 \mathrm{cal}=4.18 \mathrm{~J})$
(A) 6.61 J
(B) 35.4 J
(C) 148 J
(D) 619 J
13) What is the amount of heat required to raise the temperature of 200.0 g of aluminum by $10^{\circ} \mathrm{C}$?
(specific heat of aluminum $=0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$)
(A) 420 cal
(B) 4200 cal
(C) $42,000 \mathrm{cal}$
(D) $420,000 \mathrm{cal}$
14) What is the specific heat of a substance if 1560 cal are required to raise the temperature of a $312-\mathrm{g}$ sample by $15^{\circ} \mathrm{C}$?
(A) $0.033 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(B) $0.33 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(C) $0.99 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(D) $1.33 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
15) How many kilocalories of heat are required to raise the temperature of 225 g of aluminum from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? (specific heat of aluminum $=0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$)
(A) 0.59 kcal
(B) 3.8 kcal
(C) 85 kcal
(D) none of the above
16) The heat capacity of an object depends in part on its
\qquad _.
(A) mass
(B) enthalpy
(C) shape
(D) potential energy
17) Which of the following is a valid unit for specific heat?
(A) $\frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(B) cal
(C) $\frac{\mathrm{cal}}{\mathrm{g}}$
(D) ${ }^{\circ} \mathrm{C}$
18) When 45 g of an alloy, at $25^{\circ} \mathrm{C}$, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of the alloy is $37^{\circ} \mathrm{C}$, what is its specific heat?
(A) $0.423 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(B) $1.77 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(C) $9.88 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
(D) $48.8 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
19) How can you describe the specific heat of olive oil if it takes approximately 420 J of heat to raise the temperature of 7 g of olive oil by $30^{\circ} \mathrm{C}$?
(A) greater than the specific heat of water
(B) less than the specific heat of water
(C) equal to the specific heat of water
(D) Not enough information is given.
20) The specific heat of silver is $0.24 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}$. How many joules of energy are needed to warm 4.37 g of silver from $25.0^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$?
(A) 2.62 J
(B) 0.14 J
(C) 45.5 J
(D) 0.022 J
21) Which of the following has the greatest heat capacity?
(A) 1000 g of water
(B) 1000 g of steel
(C) 1 g of water
(D) 1 g of steel
22) Which of the following substances has the highest specific heat?
(A) steel
(B) water
(C) alcohol
(D) chloroform
23) By what quantity must the heat capacity of an object be divided to obtain the specific heat of that material?
(A) its mass
(B) its volume
(C) its temperature
(D) its energy
24) The amount of heat transferred from an object depends on which of the following?
(A) the specific heat of the object
(B) the initial temperature of the object
(C) the mass of the object
(D) all of the above
25) What does the symbol ΔH stand for?
(A) the specific heat of a substance
(B) the heat capacity of a substance
(C) the heat of reaction for a chemical reaction
(D) one Calorie given off by a reaction
26) Standard conditions of temperature and pressure for a thermochemical equation are \qquad -.
(A) $0^{\circ} \mathrm{C}$ and 101 kPa
(B) $25^{\circ} \mathrm{C}$ and 101 kPa
(C) $0^{\circ} \mathrm{C}$ and 0 kPa
(D) $25^{\circ} \mathrm{C}$ and 22.4 kPa
27) On what principle does calorimetry depend?
(A) Hess's law
(B) law of conservation of energy
(C) law of enthalpy
(D) law of multiple proportions
28) How can the enthalpy change be determined for a reaction in an aqueous solution?
(A) by knowing the specific heat of the reactants
(B) by mixing the reactants in a calorimeter and measuring the temperature change
(C) by knowing the mass of the reactants
(D) The enthalpy change for this type of reaction cannot be determined.
29) A chunk of ice whose temperature is $-20^{\circ} \mathrm{C}$ is added to an insulated cup filled with water at $0^{\circ} \mathrm{C}$. What happens in the cup?
(A) The ice melts until it reaches the temperature of the water.
(B) The water cools until it reaches the temperature of the ice.
(C) Some of the water freezes, so the chunk of ice gets larger.
(D) none of the above
30) Calculate the energy required to produce 7.00 mol $\mathrm{Cl}_{2} \mathrm{O}_{7}$ on the basis of the following balanced equation.
$2 \mathrm{Cl}_{2}(g)+7 \mathrm{O}_{2}(g)+130 \mathrm{kcal} \rightarrow 2 \mathrm{Cl}_{2} \mathrm{O}_{7}(g)$
(A) 7.00 kcal
(B) 65 kcal
(C) 130 kcal
(D) 455 kcal
31) What is the standard heat of reaction for the following reaction?
$\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)$
$\left(\Delta H_{\mathrm{f}}^{0}\right.$ for $\mathrm{Cu}^{2+}=+64.4 \mathrm{~kJ} / \mathrm{mol} ; \Delta H_{\mathrm{f}}^{0}$ for $\mathrm{Zn}^{2+}=$ $-152.4 \mathrm{~kJ} / \mathrm{mol}$)
(A) 216.8 kJ released per mole
(B) 88.0 kJ released per mole
(C) 88.0 kJ absorbed per mole
(D) 216.8 kJ absorbed per mole
32) Calculate ΔH for the following reaction.

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g) \\
& \left(\Delta H_{\mathrm{f}}^{0} \text { for } \mathrm{C}_{2} \mathrm{H}_{4}(g)=52.5 \mathrm{~kJ} / \mathrm{mol} ; \Delta H_{\mathrm{f}}^{0} \text { for } \mathrm{C}_{2} \mathrm{H}_{6}(g)\right. \\
& =-84.7 \mathrm{~kJ} / \mathrm{mol}) \\
& \text { (A) }-137.2 \mathrm{~kJ} \\
& \text { (B) }-32.2 \mathrm{~kJ} \\
& \text { (C) } 32.2 \mathrm{~kJ} \\
& \text { (D) } 137.2 \mathrm{~kJ}
\end{aligned}
$$

33) Calculate the energy released when $24.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}$ reacts in the following reaction.
$\mathrm{Na}_{2} \mathrm{O}(s)+2 \mathrm{HI}(g) \rightarrow 2 \mathrm{NaI}(s)+\mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H=-120.00 \mathrm{kcal}$
(A) 0.207 kcal
(B) 2.42 kcal
(C) 48.0 kcal
(D) $3.00 \times 10^{2} \mathrm{kcal}$
34) To calculate the amount of heat absorbed as a substance melts, which of the following information is NOT needed?
(A) the mass of the substance
(B) the specific heat of the substance
(C) the change in temperature
(D) the density of the sample
35) What is the heat of solution?
(A) the amount of heat required to change a solid into a liquid
(B) the amount of heat absorbed or released when a solid dissolves
(C) the amount of heat required to change a vapor into a liquid
(D) the amount of heat released when a vapor changes into a liquid
36) The $\Delta H_{\text {soln }}$ is \qquad -
(A) always negative
(B) always positive
(C) sometimes positive, sometimes negative
(D) always 0
37) When 1.0 g of $\operatorname{solid~} \mathrm{NaOH}\left(\Delta H_{\text {soln }}=-445.1 \mathrm{~kJ} / \mathrm{mol}\right)$ dissolves in 10 L of water, how much heat is released?
(A) 445.1 kJ
(B) 405.1 kJ
(C) 11.1 J
(D) 11.1 kJ
38) When 10 g of diethyl ether is converted to vapor at its boiling point, about how much heat is absorbed? $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, \Delta H_{\text {vap }}=15.7 \mathrm{~kJ} / \mathrm{mol}\right.$, boiling point:
$34.6^{\circ} \mathrm{C}$)
(A) 2 kJ
(B) 2 J
(C) 0.2 kJ
(D) Not enough information is given.
39) Hess's law \qquad .
(A) makes it possible to calculate ΔH for complicated chemical reactions
(B) states that when you reverse a chemical equation, you must change the sign of ΔH
(C) determines the way a calorimeter works
(D) describes the vaporization of solids
40) Using a table that lists standard heats of formation, you can calculate the change in enthalpy for a given chemical reaction. The change in enthalpy is equal
to \qquad .
(A) ΔH_{f}^{0} of products minus ΔH_{f}^{0} of reactants
(B) ΔH_{f}^{0} of products plus ΔH_{f}^{0} of reactants
(C) $\Delta H_{\mathrm{f}}^{0}$ of reactants minus $\Delta H_{\mathrm{f}}^{0}$ of products
(D) $\Delta H_{\mathrm{f}}^{0}$ of products divided by $\Delta H_{\mathrm{f}}^{0}$ of reactants
41) $\Delta H_{\mathrm{f}}^{0}$ for the formation of rust $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ is -826 $\mathrm{kJ} / \mathrm{mol}$. How much energy is involved in the formation of 5 grams of rust?
(A) 25.9 kJ
(B) 25.9 J
(C) 66 kJ
(D) 66 J
42) Calculate ΔH for the reaction of sulfur dioxide with oxygen.
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)$
$\left(\Delta H_{\mathrm{f}}^{0} \mathrm{SO}_{2}(g)=-296.8 \mathrm{~kJ} / \mathrm{mol} ; \Delta H_{\mathrm{f}}^{0} \mathrm{SO}_{3}(g)=-395.7\right.$
$\mathrm{kJ} / \mathrm{mol}$)
(A) -98.9 kJ
(B) -197.8 kJ
(C) 197.8 kJ
(D) Not enough information is given.
