Chapter 17 Study Guide

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1) What happens to the energy produced by burning gasoline in a car engine?
 - (A) The energy is lost as heat in the exhaust.
 - (B) The energy is transformed into work to move the car.
 - © The energy heats the parts of the engine.
 - ① all of the above
- 2) A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
 - (A) The temperature of the metal will increase.
 - B The temperature of the water will increase.
 - © The temperature of the water will decrease.
 - D The temperature of the water will increase and the temperature of the metal will decrease.
- 3) How does a calorie compare to a joule?
 - (A) A calorie is smaller than a joule.
 - B A calorie is larger than a joule.
 - © A calorie is equal to a joule.
 - D The relationship cannot be determined.
- 4) What would likely happen if you were to touch the flask in which an endothermic reaction were occurring?
 - (A) The flask would probably feel cooler than before the reaction started.
 - (B) The flask would probably feel warmer than before the reaction started.
 - © The flask would feel the same as before the reaction started.
 - D none of the above
- 5) Which of the following is NOT a form of energy?(A) light
 - (B) pressure
 - (C) heat
 - (D) electricity

- 6) When energy is changed from one form to another,
 - (A) some of the energy is lost entirely
 - (B) all of the energy can be accounted for
 - © a physical change occurs
 - D all of the energy is changed to a useful form
- 7) If heat is released by a chemical system, an equal amount of heat will be _____.
 - (A) absorbed by the surroundings
 - (B) absorbed by the universe
 - © released by the surroundings
 - (D) released by the universe
- 8) Which of the following is transferred due to a temperature difference?
 - (A) chemical energy
 - (B) mechanical energy
 - © electrical energy
 - D heat
- 9) In an exothermic reaction, the energy stored in the chemical bonds of the reactants is _____.
 - (A) equal to the energy stored in the bonds of the products
 - B greater than the energy stored in the bonds of the products
 - © less than the energy stored in the bonds of the products
 - D less than the heat released
- 10) When your body breaks down sugar completely, how much heat is released compared to burning the same amount of sugar in a flame?
 - (A) The body releases more heat.
 - (B) The body releases less heat.
 - © The body releases the same amount of heat.
 - D The body releases no heat.

Name:

- 11) A piece of candy has 5 Calories (or 5000 calories). If it could be burned, leaving nothing but carbon dioxide and water, how much heat would it give off?
 - (A) 500 calories
 - B 5 kilocalories
 - © 5000 joules
 - D Not enough information is given.
- 12) How many joules are in 148 calories? (1 cal = 4.18 J) (A) 6.61 J
 - B 35.4 J
 - © 148 J
 - D 619 J
- 13) What is the amount of heat required to raise the temperature of 200.0 g of aluminum by 10°C?

(specific heat of aluminum =
$$0.21 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$$
)

- (A) 420 cal
- B 4200 cal
- © 42,000 cal
- D 420,000 cal
- 14) What is the specific heat of a substance if 1560 cal are required to raise the temperature of a 312-g sample by 15°C?
 - (A) 0.033 $\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$
 - (B) 0.33 $\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$
- 15) How many kilocalories of heat are required to raise the temperature of 225 g of aluminum from 20°C to

100°C? (specific heat of aluminum = 0.21 $\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$)

- (A) 0.59 kcal
- B 3.8 kcal
- © 85 kcal
- D none of the above

- 16) The heat capacity of an object depends in part on its
 - (A) mass
 - (B) enthalpy
 - © shape
 - D potential energy
- 17) Which of the following is a valid unit for specific heat?
 - (A) $\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$
 - B cal

 - $\bigcirc \frac{\operatorname{can}}{\operatorname{g}}$
 - © ℃
- 18) When 45 g of an alloy, at 25°C, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of the alloy is 37°C, what is its specific heat?

(A) 0.423
$$\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$$

(B) 1.77 $\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$
(C) 9.88 $\frac{\text{cal}}{\text{g}^{\circ}\text{C}}$

- 19) How can you describe the specific heat of olive oil if it takes approximately 420 J of heat to raise the temperature of 7 g of olive oil by 30°C?
 - (A) greater than the specific heat of water
 - ^(B) less than the specific heat of water
 - © equal to the specific heat of water
 - D Not enough information is given.
- 20) The specific heat of silver is 0.24 $\frac{J}{g^{\circ}C}$. How many

joules of energy are needed to warm 4.37 g of silver from 25.0°C to 27.5°C?

- (A) 2.62 J
- B 0.14 J
- © 45.5 J
- D 0.022 J

Name:

- 21) Which of the following has the greatest heat capacity?
 - (A) 1000 g of water
 - B 1000 g of steel
 - © 1 g of water
 - D 1 g of steel
- 22) Which of the following substances has the highest specific heat?
 - (A) steel
 - (B) water
 - © alcohol
 - D chloroform
- 23) By what quantity must the heat capacity of an object be divided to obtain the specific heat of that material?
 - (A) its mass
 - (B) its volume
 - © its temperature
 - D its energy
- 24) The amount of heat transferred from an object depends on which of the following?
 - (A) the specific heat of the object
 - (B) the initial temperature of the object
 - © the mass of the object
 - D all of the above
- 25) What does the symbol ΔH stand for?
 - (A) the specific heat of a substance
 - (B) the heat capacity of a substance
 - © the heat of reaction for a chemical reaction
 - D one Calorie given off by a reaction
- 26) Standard conditions of temperature and pressure for a thermochemical equation are _____.
 - (A) 0° C and 101 kPa
 - B 25°C and 101 kPa
 - O 0°C and 0 kPa
 - D 25°C and 22.4 kPa
- 27) On what principle does calorimetry depend?
 - (A) Hess's law
 - (B) law of conservation of energy
 - © law of enthalpy
 - D law of multiple proportions

- 28) How can the enthalpy change be determined for a reaction in an aqueous solution?
 - (A) by knowing the specific heat of the reactants
 - (B) by mixing the reactants in a calorimeter and measuring the temperature change
 - © by knowing the mass of the reactants
 - (D) The enthalpy change for this type of reaction cannot be determined.
- 29) A chunk of ice whose temperature is -20°C is added to an insulated cup filled with water at 0°C. What happens in the cup?
 - (A) The ice melts until it reaches the temperature of the water.
 - (B) The water cools until it reaches the temperature of the ice.
 - © Some of the water freezes, so the chunk of ice gets larger.
 - D none of the above
- 30) Calculate the energy required to produce 7.00 mol Cl_2O_7 on the basis of the following balanced equation.

 $2\dot{\mathrm{Cl}}_{2}(g) + 7\mathrm{O}_{2}(g) + 130 \text{ kcal} \rightarrow 2\mathrm{Cl}_{2}\mathrm{O}_{2}(g)$

- A 7.00 kcal
- B 65 kcal
- © 130 kcal
- D 455 kcal
- 31) What is the standard heat of reaction for the following reaction? $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$
 - $(\Delta H_{\rm f}^0 \text{ for } {\rm Cu}^{2+} = +64.4 \text{ kJ/mol}; \Delta H_{\rm f}^0 \text{ for } {\rm Zn}^{2+} =$
 - -152.4 kJ/mol)
 - (A) 216.8 kJ released per mole
 - (B) 88.0 kJ released per mole
 - © 88.0 kJ absorbed per mole
 - D 216.8 kJ absorbed per mole
- 32) Calculate ΔH for the following reaction. $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ $(\Delta H_f^0 \text{ for } C_2H_4(g) = 52.5 \text{ kJ/mol}; \Delta H_f^0 \text{ for } C_2H_6(g)$ = -84.7 kJ/mol)(A) -137.2 kJ (B) -32.2 kJ (C) 32.2 kJ (D) 137.2 kJ

33) Calculate the energy released when 24.8 g Na_2O

reacts in the following reaction.

 $Na_2O(s) + 2HI(g) \rightarrow 2NaI(s) + H_2O(l)$

 $\Delta H = -120.00 \text{ kcal}$

- (A) 0.207 kcal
- B 2.42 kcal
- © 48.0 kcal
- (D) 3.00×10^2 kcal
- 34) To calculate the amount of heat absorbed as a substance melts, which of the following information is NOT needed?
 - (A) the mass of the substance
 - (B) the specific heat of the substance
 - © the change in temperature
 - (D) the density of the sample
- 35) What is the heat of solution?
 - (A) the amount of heat required to change a solid into a liquid
 - B the amount of heat absorbed or released when a solid dissolves
 - © the amount of heat required to change a vapor into a liquid
 - (D) the amount of heat released when a vapor changes into a liquid
- 36) The ΔH_{soln} is ____.
 - (A) always negative
 - (B) always positive
 - © sometimes positive, sometimes negative
 - D always 0
- 37) When 1.0 g of solid NaOH ($\Delta H_{soln} = -445.1$ kJ/mol) dissolves in 10 L of water, how much heat is released?
 - (A) 445.1 kJ
 - (B) 405.1 kJ
 - © 11.1 J
 - D 11.1 kJ

- 38) When 10 g of diethyl ether is converted to vapor at its boiling point, about how much heat is absorbed? $(C_4 H_{10} O, \Delta H_{vap} = 15.7 \text{ kJ/mol, boiling point:})$
 - 34.6°C)
 - A 2 kJ
 - 1 2 J
 - © 0.2 kJ
 - D Not enough information is given.
- 39) Hess's law ____
 - (A) makes it possible to calculate ΔH for complicated chemical reactions
 - (B) states that when you reverse a chemical equation, you must change the sign of ΔH
 - © determines the way a calorimeter works
 - (D) describes the vaporization of solids
- 40) Using a table that lists standard heats of formation, you can calculate the change in enthalpy for a given chemical reaction. The change in enthalpy is equal to _____.
 - (A) $\Delta H_{\rm f}^0$ of products minus $\Delta H_{\rm f}^0$ of reactants
 - (B) $\Delta H_{\rm f}^0$ of products plus $\Delta H_{\rm f}^0$ of reactants
 - $\bigcirc \Delta H_{f}^{0}$ of reactants minus ΔH_{f}^{0} of products
 - (D) ΔH_f^0 of products divided by ΔH_f^0 of reactants
- 41) $\Delta H_{\rm f}^0$ for the formation of rust (Fe₂O₃) is -826 kJ/mol. How much energy is involved in the formation of 5 grams of rust?
 - (A) 25.9 kJ
 - B 25.9 J
 - © 66 kJ
 - D 66 J
- 42) Calculate ΔH for the reaction of sulfur dioxide with oxygen. 2SO₂(g) + O₂(g) \rightarrow 2SO₃(g)

 $(\Delta H_{\rm f}^0 \text{SO}_2(g) = -296.8 \text{ kJ/mol}; \Delta H_{\rm f}^0 \text{SO}_3(g) = -395.7$

kJ/mol)

(A) −98.9 kJ

- B −197.8 kJ
- © 197.8 kJ
- D Not enough information is given.