\qquad ID: A

Chapter 16 Take Home Quiz

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1) Which of the following usually makes a substance dissolve faster in a solvent?
(A) agitating the solution
(B) increasing the particle size of the solute
(C) lowering the temperature
(D) decreasing the number of particles
\qquad 2) Which of the following expressions is generally used for solubility?
(A) grams of solute per 100 grams of solvent
(B) grams of solute per 100 milliliters of solvent
(C) grams of solute per 100 grams of solution
(D) grams of solute per 100 milliliters of solution
\qquad 3) Which of the following pairs of factors affects the solubility of a particular substance?
(A) temperature and the nature of solute and solvent
(B) temperature and degree of mixing
(C) particle size and degree of mixing
(D) particle size and temperature
\qquad 4) Which of the following occurs as temperature increases?
(A) Solubility decreases.
(C) Solubility remains the same.
(B) Solubility increases.
(D) Molarity doubles.
\qquad 5) What happens to the solubility of a gas, in a liquid, if the partial pressure of the gas above the liquid decreases?
(A) The solubility decreases.
(C) The solubility remains the same.
(B) The solubility increases.
(D) The solubility cannot be determined.
\qquad 6) Which of the following operations yields the number of moles of solute?
(A) molarity \times moles of solution
(C) molarity \times mass of solution
(B) molarity \times liters of solution
(D) moles of solution \div volume of solution
\qquad 7) What is the molarity of 200 mL of solution in which 2.0 moles of sodium bromide is dissolved?
(A) 2.0 M
(C) 0.40 M
(B) $10 M$
(D) 4.0 M
\qquad 8) What mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is needed to make 2.5 L of 2.0 M solution? $(\mathrm{Na}=23 \mathrm{~g} ; \mathrm{S}=32 \mathrm{~g} ; \mathrm{O}=16 \mathrm{~g})$
(A) 178 g
(C) 356 g
(B) 284 g
(D) 710 g
\qquad 9) What does NOT change when a solution is diluted by the addition of solvent?
(A) volume of solvent
(C) number of moles of solute
(B) mass of solvent
(D) molarity of solution
\qquad 10) How many mL of a 2.0 M NaBr solution are needed to make 200.0 mL of 0.50 M NaBr ?
(A) 25 mL
(C) 100 mL
(B) 50 mL
(D) 150 mL
11) If 2.0 mL of 6.0 M HCl is used to make a $500.0-\mathrm{mL}$ aqueous solution, what is the molarity of the dilute solution?
(A) $0.024 M$
(C) 0.30 M
(B) $0.24 M$
(D) 0.83 M
\qquad 12) In which of the following is concentration expressed in percent by volume?
(A) $10 \%(\mathrm{v} / \mathrm{v})$
(C) $10 \%(\mathrm{~m} / \mathrm{m})$
(B) $10 \%(\mathrm{~m} / \mathrm{v})$
(D) 10%
\qquad 13) If the percent (mass/mass) for a solute is 4% and the mass of the solution is 200 g , what is the mass of solute in solution?
(A) 8.0 g
(C) 80 g
(B) 50 g
(D) 800 g
\qquad 14) Which of the following is NOT a colligative property of a solution?
(A) boiling point elevation
(C) vapor pressure lowering
(B) supersaturation
(D) freezing point depression
15) Which of the following is an expression of molality?
(A) $\frac{10 \mathrm{~mol} \text { of solute }}{1 \mathrm{~kg} \text { of solvent }}$
(C) $\frac{10 \mathrm{~mol} \text { of solute }}{1 \mathrm{~L} \text { of solvent }}$
(B) $\frac{10 \mathrm{~mol} \text { of solute }}{1 \mathrm{~L} \text { of solution }}$
(D) $\frac{10 \mathrm{~mol} \text { of solute }}{1 \mathrm{~kg} \text { of solution }}$
\qquad 16) What is the number of kilograms of solvent in a 0.70 molal solution containing 5.0 grams of solute? (molar mass of solute $=30 \mathrm{~g}$)
(A) 0.24 kg
(C) 0.11 kg
(B) 2.4 kg
(D) 1.1 kg
\qquad 17) What is the freezing point of a solution of 0.5 mol of LiBr in 500 mL of water? $\left(K_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$
(A) $-1.86^{\circ} \mathrm{C}$
(C) $-5.58^{\circ} \mathrm{C}$
(B) $-3.72^{\circ} \mathrm{C}$
(D) $-7.44^{\circ} \mathrm{C}$
\qquad 18) What is the boiling point of a solution that contains 3 moles of KBr in 2000 g of water? $\left(K_{\mathrm{b}}=0.512^{\circ} \mathrm{C} / \mathrm{m}\right.$; molar mass of water $=18 \mathrm{~g}$)
(A) $97^{\circ} \mathrm{C}$
(C) $101.4^{\circ} \mathrm{C}$
(B) $99.7^{\circ} \mathrm{C}$
(D) $103^{\circ} \mathrm{C}$
\qquad 19) What is the molality of a solution of water and KCl if the freezing point of the solution is $-3^{\circ} \mathrm{C}$? $\left(K_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right.$; molar mass of water $=18 \mathrm{~g}$)
(A) 0.6 m
(C) $0.8 m$
(B) 1.2 m
(D) $6 m$
\qquad 20) What is the approximate molar mass of a molecular solute if 300 g of the solute in 1000 g of water causes the solution to have a boiling point of $101^{\circ} \mathrm{C} ?\left(K_{\mathrm{b}}=0.512^{\circ} \mathrm{C} / \mathrm{m} ; K_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right.$; molar mass of water $\left.=18 \mathrm{~g}\right)$
(A) 15 amu
(C) 150 amu
(B) 30 amu
(D) 300 amu

